

Journal of Organometallic Chemistry 539 (1997) 141-146

Trapping of a phenyl group by a ruthenium cluster during dephenylation of coordinated $CH_2(PPh_2)_2$ (dppm)

Michael I. Bruce ^{a,*}, Paul A. Humphrey ^a, Brian W. Skelton ^b, Allan H. White ^b

^a Department of Chemistry, University of Adelaide, Adelaide 5005, Australia ^b Department of Chemistry, University of Western Australia, Nedlands 6907, Australia

Received 5 November 1996; revised 30 December 1996; accepted 30 December 1996

Abstract

Pyrolysis of $\{Ru_3(\mu-dppm)(CO)_9\}_n(dppa)$ (n = 1 or 2) afforded $Ru_3(\mu_3-PPhCH_2PPh_2)(\mu_3-\eta^1:\eta^2:P-C_2PPh_2)(\mu-PPh_2)(Ph)(CO)_6$, containing an Ru_3 chain bridged by a dephenylated dppm ligand and by C_2PPh_2 and PPh_2 ligands derived from the dppa ligand. The phenyl group from the dppm ligand has been trapped by one of the Ru atoms to give a rare example of a cluster-bound σ -Ph group. The molecular structure of $Ru_3(\mu-H)(\mu_3-\eta^1,\eta^2-CCHP(O)Ph_2)(\mu-PPh_2)(\mu-dppm)(CO)_6$, obtained on one occasion from the mono-cluster complex, is also described. © 1997 Elsevier Science S.A.

Keywords: Ruthenium cluster; Dephenylation; Molecular structure

1. Introduction

Some of the earliest investigations of cluster complexes containing tertiary phenylphosphine ligands revealed that the coordinated ligands were activated towards further reaction, often involving C-H or P-C(Ph) bond cleavage [1]. In many cases, the observed results were either ortho-metallation of a phenyl group to give $PR_2(C_6H_4)$ or $PR(C_6H_4)$ ligands or the formation of phosphido complexes, with concomitant loss of the phenyl group, probably as benzene by combination with a cluster hydride or the ortho-H atom [2]. Alternatively, combination of C-H and P-C bond cleavage reactions afford cluster-bonded benzynes [2,3], and reactions to give PhCHO have also been described [4]. However, few complexes containing cluster-bound phenyl groups have been described, two examples being the formation of Ir₃(μ_3 -PPh)(μ -dppm)(Ph)(CO)₆ in the reaction between $IrCl(CO)_2(NH_2C_6H_4Me-4)$ and $CH(PPh_2)_3$ [5] and the pyrolysis of $Pt(\eta - C_2H_4)(PPh_3)_2$ to various isomers of $Pt_3(\mu-PPh_2)_3(Ph)(PPh_3)_2$, which has recently been the subject of a detailed study [6,7]. In the extensive chemistry of ruthenium and osmium carbonyls, we are aware of four cases. One of the nine

0022-328X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(97)00036-3

complexes obtained on heating a mixture of $Os_3(CO)_{12}$ and PPh₃ in refluxing xylene was characterised by an X-ray study as $Os_3(\mu_3-PPh(C_6H_4))(\mu-PPh_2)(\mu-$ Ph)(CO)₈, in which the phenyl group has been trapped by the Os₃ cluster and bridges an Os-Os bond [8]. Spontaneous P-C bond cleavage is found in the complex $\operatorname{Ru}_3(\operatorname{CO})_{11}\{\operatorname{PPh}_2(\operatorname{C}_5\operatorname{H}_4\operatorname{N}-2)\}$. At 25°C, the released phenyl group is assumed to migrate, firstly to the cluster and then to a coordinated CO group to give the observed product, $\operatorname{Ru}_{3}\{\mu_{3},\eta^{2}-\operatorname{PPh}(C_{5}H_{4}N-2)\}(\mu,\eta^{2}-\eta^{2}$ OCPh)(CO)₉ [9]. More recently, treatment of Ru₃(μ -H)(μ_3 -ampy)(CO)₇(PPh₃)₂ with H₂ in refluxing toluene afforded $\operatorname{Ru}_{3}(\mu_{3}\operatorname{-ampy})(\mu\operatorname{-PPh}_{2})_{2}(\mu\operatorname{-Ph})(\operatorname{CO})_{6}$; similar reactions occurred with the analogous PMe₂Ph, $P(C_6H_4Me-4)_3$, PCy_3 and $AsPh_3$ complexes [10]. Finally, one of the products obtained from the reaction between $Ru_3(\mu$ -dppm)(CO)₁₀ and cycloocta-1,3,5,7-tetraene is $Ru_3(\mu_3$ -PPhCH₂PPh₂)(μ_3 -C₈H₈)(Ph)(CO)₅ [11].

Many reactions of Ru₃(μ -dppm)(CO)₁₀ (1) have been described in which alteration of the dppm ligand has occurred [12]. These reactions include dephenylation (to give μ_3 -PPhCH₂PPh₂) [13], metallation (to give μ_3 -PPh₂CH₂PPh(C₆H₄)) [13], and a combination of both reactions (to give μ_3 -PPhCH_nPPh(C₆H₄) (n = 1 or 2)) [13,14]. Extension of these studies to Ru₃(μ dppm)(CO)₉(PPh₃) afforded related compounds, as well

^{*} Corresponding author.

as an acylated benzoylphosphine and the μ -CH₂PPhC₆H₄PPh-2 ligand [15]. Pyrolysis of {Ru₃(CO)₁₁}₂(μ -dppa) gives a high yield of Ru₅(μ ₅-C₂PPh₂)(μ -PPh₂)(CO)₁₃ [16], which has proved to be an excellent precursor for a variety of novel clusters, including the C₂ complex Ru₅(μ ₅-C₂)(μ -SMe)₂(μ -PPh₂)₂(CO)₁₁ [17]. We now report the synthesis of dppa derivatives of 1, thermolyses of which do not give any higher nuclearity clusters, but afford instead two complexes containing interesting structural features.

identified as $[M + O]^+$, the ready formation of which is perhaps relevant to its occasional behaviour on pyrolysis (see below).

The products obtained by heating either complex in refluxing toluene for between 1 and 3 h were separated by preparative TLC. The major product in both cases was identified as $Ru_3(\mu_3$ -PPhCH₂PPh₂)(\mu_3-\eta^1:\eta^2:P-C_2PPh_2)(\mu-PPh_2)(Ph)(CO)_6 (4) (66% from 2, 52% from 3) by a single-crystal X-ray structure determination. On one occasion, the pyrolysis of 2 gave trace amounts of $Ru_3(\mu-H){\mu_3-\eta^1,\eta^2-CCHP(O)Ph_2}(\mu-PPh_2)(\mu-PPh_2)(\mu-PPh_2)(\mu-QPPh_2)(\mu-P$

2. Results

The complexes {Ru₃(μ -dppm)(CO)₉]_n(dppa) (n = 1(2) and 2 (3)) were prepared by addition of Me₃NO to stoichiometric mixtures of 1 and dppa in tetrahydrofuran at room temperature. Purification by preparative thin-layer chromatography afforded the required complexes in 52% and 81% yields for n = 1 and n = 2respectively. In the former reaction, 13% of 3 was also obtained. These compounds were obtained as red (2) or orange (3), air-stable solids, which were identified by a combination of elemental analysis and spectroscopic methods. The IR ν (CO) spectra are very similar, each containing four bands between 2055 and 1945 cm⁻¹, while the fast atom bombardment mass spectra are distinctly different, containing M⁺ ions at m/z 1335 and 2275 respectively. For 2, an ion at m/z 1351 was

2.1. $Ru_{3}(\mu_{3}-PPhCH_{2}PPh_{2})(\mu_{3}-\eta^{1}:\eta^{2}:P-C_{2}PPh_{2})(\mu-PPh_{2})(Ph)(CO)_{6}$ (4)

Fig. 1 is a plot of a molecule of 4 and significant bond parameters are collected in Table 1. The three Ru atoms form a bent chain (Ru(1)-Ru(2)-Ru(3)131.95(5)°), along which are μ_3 -PPhCH₂PPh₂ and μ_3 -C₂PPh₂ ligands, together with a μ -PPh₂ group. The Ru(1)-Ru(2) separation, which is bridged by the dephenylated dppm ligand, C(2) of the organic ligand and the PPh₂ group, is the shorter, at 2.779(2)Å. The Ru(2)-Ru(3) vector, bridged by P(2) and C(1)-P(1), is considerably longer, at 2.957(2)Å. The various Ru-P separations are found between 2.310(3) and 2.389(3)Å

Fig. 1. Plot of a molecule of $\operatorname{Ru}_3(\mu_3-\operatorname{PPhCH}_2\operatorname{PPh}_2)(\mu_3-\eta^1:\eta^2:P-C_2\operatorname{PPh}_2)(\mu-\operatorname{PPh}_2)(\operatorname{Ph})(\operatorname{CO})_6$ (4), showing the atom numbering scheme, carbon atoms denoted by number only. In this and Fig. 2, non-hydrogen atoms are shown with 20% thermal envelopes; hydrogen atoms have arbitrary radii of 0.1 Å.

and are within the ranges found for many other examples of Ru-P(phosphino) and Ru-P(phosphido) distances. Coordination is completed by two terminal CO ligands on each Ru atom and a σ -phenyl group on Ru(3) (2.11(2)Å). The latter value is similar to that found in Ru₃(μ_3 -PPhCH₂PPh₂)(μ_3 -C₈H₈)(Ph)(CO)₅ (2.096(3)Å) [11].

The organic ligand is formally obtained by oxidative addition of one P-C bond in the dppa across Ru(1)-Ru(2), and becomes attached to all three Ru atoms by means of the Ru(1)-C(2) σ -bond (2.025(9) Å), a π -bond

Table 1 Selected bond parameters for $Ru_3(\mu_3$ -PPhCH₂PPh₂)(μ_3 - η^1 : η^2 :P- C_2PPh_2)(μ -PPh₂)(Ph)(CO)₆ (4)

Bond lengths (Å)		Bond angles (deg)	
Ru(1)-Ru(2)	2.779(2)	Ru(1)-Ru(2)-Ru(3)	131.95(5)
Ru(2)-Ru(3)	2.957(2)	Ru(1)P(3)-Ru(2)	73.6(1)
Ru(1)-P(1)	2.389(3)	Ru(2)-P(2)-Ru(3)	77. 96(9)
Ru(1)-P(3)	2.310(3)	Ru(1)-C(2)-C(1)	157(2)
Ru(2)-P(2)	2.385(3)	C(2)-C(1)-P(4)	154(1)
Ru(2)-P(3)	2.330(5)	Ru(3) - P(4) - C(1)	102.3(6)
Ru(3)-P(2)	2.314(3)	P(1)-C(0)-P(2)	113.7(6)
Ru(3) - P(4)	2.359(6)	Ru(1) - P(1) - C(0)	108.4(5)
Ru(1)-C(2)	2.025(9)	Ru(2) - P(2) - C(0)	111.6(5)
Ru(2) - C(1)	2.38(2)		
Ru(2) - C(2)	2.32(2)		
Ru(3)-C(101)	2.11(2)		
P(4)-C(1)	1.78(1)		
C(1)-C(2)	1.21(1)		

from C(2)-C(1) to Ru(2) (2.38 Å, 2.32(2) Å respectively) and the Ru(3)-P(1) bond (2.359(6) Å). The C(1)-C(2) separation is short (1.21(2) Å), suggesting only a weak interaction with Ru(2), which is borne out by the long Ru-C distances. Angles at C(2) and C(1) are 157(2) and 154(1)°, again supporting little backbonding from Ru(2) into the C₂ fragment. If this weak interaction is included, the complex is an electron-precise 50e⁻ system.

The spectroscopic properties are in accord with the solid-state structure, insofar as they are diagnostic. The characteristic multiplet pattern for the two CH₂ protons found in the ¹H NMR spectrum forms the AB part of an ABXY spin system, and the fast-atom bombardment mass spectrum (FAB MS) contains an M⁺ ion and several, but not all, of the expected daughter ions formed by loss of CO groups. The IR ν (CO) spectrum contains four medium to very strong bands between 2030 and 1955 cm⁻¹; whether a weak band at 1905 cm⁻¹ is to be assigned to ν (CO) or ν (CC) is not clear.

2.2. $Ru_3(\mu-H){\mu_3-\eta^1,\eta^2-CCHP(O)Ph_2}(\mu-PPh_2)(\mu-dppm)(CO)_6$ (5)

Fig. 2 is a plot of a molecule of 5, while important bond parameters are collected in Table 2. The three Ru atoms form a triangular array, of which one edge is too long (Ru(1)...Ru(3) 3.511(1)Å) for there to be any significant bonding interaction, although it is bridged by the PPh₂ ligand (Ru(1,3)-P(3) 2.370, 2.298(2)Å; Ru(1)-P(3)-Ru(3) 97.54(9)°). The long Ru(1)-Ru(2) edge (2.884(1)Å) is bridged by the dppm ligand and may also be bridged by the H atom required by the electron count; however, this atom was not located

Fig. 2. Plot of a molecule of $\operatorname{Ru}_3(\mu-H){\mu_3-\eta^1,\eta^2-CCHP(O)Ph_2}{\mu-PPh_2}{\mu-PPh_2}$

Table 2 Selected bond parameters for $\operatorname{Ru}_3(\mu-H){\{\mu_3-\eta^1,\eta^2-CCHP(O)Ph_2\}}(\mu-PPh_2)(\mu-dppm)(CO)_6$ (5)

Bond lengths (Å)		Bond angles (deg)	
Ru(1)-Ru(2)	2.884(1)	Ru(1)-Ru(2)-Ru(3)	75.89(2)
Ru(1)Ru(3)	3.511(1)	Ru(1) - P(3) - Ru(3)	97.54(9)
Ru(2)-Ru(3)	2.825(1)	Ru(1) - P(1) - C(0)	110.9(3)
Ru(1) - P(1)	2.372(2)	Ru(2) - P(2) - C(0)	110.8(2)
Ru(1)-P(3)	2.370(2)	Ru(3) - O(4) - P(4)	91.6(2)
Ru(2)-P(2)	2.322(2)	Ru(1)-C(2)-C(1)	126.3(5)
Ru(3)-P(3)	2.298(2)	Ru(2)-C(2)-C(1)	140.5(5)
Ru(3)-O(4)	2.309(6)	C(2)-C(1)-P(4)	122.0(5)
Ru(1) - C(2)	2.137(8)	C(1) - P(4) - O(4)	107.3(3)
Ru(2) - C(2)	1.976(7)		
Ru(3) - C(1)	2.317(7)		
Ru(3) - C(2)	2.297(7)		
P(4)-O(4)	1.526(5)		
P(1) - C(0)	1.836(8)		
P(2)-C(0)	1.824(8)		
P(4) - C(1)	1.784(8)		
C(1) - C(2)	1,44(1)		

during the refinement. Values for Ru-Ru bonds bridged by dppm alone have been reported at 2.843(1) Å in 1 [18] and 2.839(1) Å in Ru₃(μ -dppm)(μ -C₈H₈)(CO)₆ [11].

The major point of interest is the organic ligand, which is a μ_3 -vinylidene carrying as one of the substituents on C(1) a P(O)Ph₂ group, of which the O atom is bonded to Ru(3) (2.309(6)Å), with P(4)-O(4) 1.526(5)Å. These values can be compared with those found in Ru₂(μ -PPh₂O)(μ -C₂Bu¹)(CO)₆ [19], where the Ru-O bond is 2.135(2)Å and the P-O bond 1.544(2)Å, and are consistent with considerable multiple bond character in the P-O bond and with donation to Ru(3) by a lone pair from O(4). There must also be a hydrogen atom attached to C(1), although this was not located directly.

The vinylidene is attached in the familiar μ_3 , η^1 , η^2 mode, with Ru(1,2)-C(2) 2.137(8), 1.976(7)Å and Ru(3)-C(1,2) 2.317, 2.297(7)Å. There are three other crystallographically characterised μ_3 -vinylidene complexes of ruthenium, namely $Ru_3(C=CPr^{(PPh_2)})(CO)_{\alpha}$ (6) [20], $\text{Ru}_3(\mu-H)_2(\mu_3-\text{CCMePh})(\text{CO})_9$ (7) [21] and $Ru_{5}(\mu_{3}-CCHPh)(\mu_{4}-PPh)(\mu-PPh_{2})(CO)_{9}Cp^{*}$ (8) [22]. Comparisons with the situation in 5 are not straightforward, because of the differing chelating natures of the vinylidenes in 5 and 6, the presence of cluster-bound H atoms in 7 and the larger cluster in 8, of which the vinylidene spans only one face. The μ_3 -vinylidene ligand in 6, for example, in which the PPh_2 group chelates one of the σ -bonded Ru atoms, contrasts with the C(1)-C(2) unit in 5 which is attached more strongly (presumably because of the formation of a larger ring), while there is considerably greater asymmetry of σ bonding of C(2) to the other two Ru atoms (1.976(7) and 2.137(8)Å) than found in 6 (2.126, 2.182(5)Å). In the other two complexes, the Ru-Ru separations range from 2.735-2.840(1) Å (in 7) and 2.739-2.939(3) Å (in 8), while the Ru-C(σ) bonds are 2.03, 2.06(1) Å in 7 and 1.93, 2.19(2) Å in 8. In the four complexes 5-8, the C-C separations are 1.43(1) Å, 1.408(7) Å, 1.379(8) Å and 1.44(3) Å respectively.

Spectroscopic properties include a six-band ν (CO) spectrum and the observation of M⁺ and [M nCC]⁺ (n = 1-6) ions in the FAB MS. The small amount of material obtained precluded our getting a ¹H NMR spectrum and thereby confirming the presence of the cluster-bound H atom.

3. Discussion

We have described the preparation of derivatives of $\operatorname{Ru}_3(\mu$ -dppm)(CO)₁₀ in which one of the CO groups on the unique ruthenium atom has been replaced by the *P*-donor group in dppa. Since this ligand cannot chelate, addition of up to two of the Ru₃ clusters is possible, giving complexes 2 and 3. Thermolysis of these compounds has given the same complex in both cases, characterised as 4 by X-ray crystallography and containing a bent Ru₃ chain. On one occasion, a rare example of a phosphinoxy-vinylidene ligand was found spanning an open Ru₃ cluster in 5.

Formation of these complexes can be understood in terms of the well-known cleavage of P-C(sp) bonds in alkynylphosphines coordinated to metal clusters. Dephenylation of the dppm ligand is a common reaction, as noted above, although the present instance joins that found with a cycloocta-1,3,5,7-tetraene-Ru₃ cluster [11] as only the second instance when the phenyl group has been trapped by the cluster. A related example is found in $\operatorname{Ru}_3(\mu_3-\operatorname{PPhCH}_2\operatorname{PPh}_2)(\mu_3-\operatorname{PhC}_2\operatorname{Bu}^t)(\operatorname{CO})_6$ [23], in which the Ph group has been transferred to a coordinated alkynyl group. The formation of 5 probably results from addition of traces of water to the C₂PPh₂ ligand formed by P-C(sp) bond cleavage, this reaction occurring either during the synthesis or during work-up. Both H–O bonds are broken, with the oxygen attaching to a PPh₂ group, one hydrogen to the vinylidene C_{β} atom and the other to the metal cluster.

Both clusters are electron precise (50-e), although the apparently weak interaction of the C=C triple bond with Ru(2) in 4 (short C(1)-C(2) bond, long Ru(2)-C(1,2) separations, together with the geometry about the two carbon atoms) suggests that steric constraints control the final molecular structure in this complex. In 5, the presence of an H atom bridging one of the Ru-Ru bonds in the cluster is inferred and is consistent with this electron count.

In conclusion, these results have shown that heating either 2 or 3 does not lead to nigher nuclearity clusters, but instead fragmentation of the tertiary phosphine ligands occurs. This can be rationalised by the tendency of Ru_3 -dppm clusters to preserve the Ru_3 core.

4. Experimental

4.1. Instrumentation

IR: Perkin–Elmer 1700X FT IR. NMR: Bruker CXP300 or ACP300 (¹H NMR at 300.13 MHz, ¹³C NMR at 75.47 MHz). FAB MS: VG ZAB 2HF (using 3-nitrobenzyl alcohol as matrix, exciting gas Ar, FAB gun voltage 7.5 kV, current 1 mA, accelerating potential 7 kV).

4.2. General reaction conditions

Reactions were carried out under an atmosphere of nitrogen, but no special precautions were taken to exclude oxygen during work-up.

4.3. Starting materials

The complex $Ru_3(\mu$ -dppm)(CO)₁₀ was prepared as described earlier [24]; dppa was a commercial product, used as-received.

4.4. Preparation of $Ru_3(\mu$ -dppm) $(\eta^1$ -dppa)(CO)_o (2)

To a stirred solution of $Ru_3(\mu$ -dppm)(CO)₁₀ (224 mg, 0.231 mmol) and dppa (97 mg, 0.25 mmol) in thf (20 ml) was added Me₃NO (24 mg, 0.32 mmol). After stirring at room temperature for 10 min the solvent was removed in vacuo. Preparative TLC (acetone-light petroleum 3:7) showed three major bands. Band 1 (red-orange, $R_{\rm f}$ 0.48) was crystallised from CH₂Cl₂-MeOH to give red crystals of $\operatorname{Ru}_{3}(\mu\text{-dppm})(\operatorname{CO})_{0}(\eta^{1}\text{-dppa})$ (2) $(159 \text{ mg}, 52\%) \text{ m.p.} > 180 ^{\circ}\text{C}$ (dec.). Found: C, 53.13; H, 3.21; $C_{60}H_{42}O_9P_4Ru_3 \cdot 0.5CH_2Cl_2$ requires C, 52.79; H, 3.15%. Infrared (cyclohexane): ν(CO) 2054w, 1995s, 1979vs, 1945w cm⁻¹. ¹H NMR: δ (CDCl₃) 4.15 $[t, J(PH) = 10.2 Hz, 2 H, CH_2], 5.30 (s, 1 H, CH_2Cl_2),$ 7.26–7.72 (m, 40 H, Ph). FAB MS (m/z): 1351, $[M + O]^+$, 17; 1335, M⁺, 20; 1223, $[M - 4CO]^+$, 33; 1195, $[M - 5CO]^+$, 100. Band 2 (orange, $R_f 0.34$) was precipitated by the addition of MeOH to a CH₂Cl₂ extract. The orange compound was collected and identified as $\{\operatorname{Ru}_3(\mu\operatorname{-dppm})(\operatorname{CO})_{\mathfrak{g}}\}_2(\mu\operatorname{-dppa})$ (3) (34 mg, 13%) by spot TLC and its IR ν (CO) spectrum. Band 3 (orange, $R_f 0.26$) was not identified (7 mg, 2%). Infrared (cyclohexane): ν (CO) 2055w, 2000s, 1984vs, 1953w cm⁻¹. FAB MS (m/z): 1350, $[M]^+$.

4.5. Preparation of $\{Ru_3(\mu-dppm)(CO)_{q}\}_2(\mu-dppa)$ (3)

To a stirred solution of $\text{Ru}_3(\mu\text{-dppm})(\text{CO})_{10}$ (156 mg, 0.161 mmol) and dppa (32 mg, 0.081 mmol) in thf (10 ml) was added Me₃NO (14 mg, 0.19 mmol). After

stirring at room temperature for 30 min, the reaction mixture was evaporated to dryness. This residue was dissolved in acetone (40 ml) and filtered through a Celite plug. Evaporation (rotary evaporator) to ca. 10 ml yielded {Ru₃(μ -dppm)(CO)₉}(μ -dppa) (3) as an orange powder (148 mg, 81%), m.p. > 180 °C (dec.). Found: C, 49.08; H, 2.83; C₉₄H₆₄O₁₈P₆Ru₆ requires C, 49.65; H, 2.84%. Infrared (CH₂Cl₂): ν (CO) 2055w/1996vs, 1980vs, 1947w cm⁻¹. ¹H NMR: δ 4.14 [t, J(PH) = 10 Hz, 4 H, 2 × CH₂], 7.34 (m, 60 H, Ph). FAB MS (m/z): 2275, M^+ .

4.6. Pyrolysis of $Ru_3(\mu$ -dppm) $(\eta^1$ -dppa)(CO)_0

A solution of Ru₃(μ -dppm)(CO)₉(η^1 -dppa) (99 mg, 0.074 mmol) in thf (20 ml) was heated at reflux point for 2.5 h. After evaporation to dryness (rotary evaporator), preparative TLC (acetone-light petroleum 3:7) separated one major product in a yellow band ($R_f 0.59$). Crystallisation (CH₂Cl₂-MeOH) gave bright yellow crystals of $\operatorname{Ru}_3(\mu_3-\operatorname{PPhCH}_2\operatorname{PPh}_2)(\mu_3-\eta^1:\eta^2:P C_2 PPh_2$)(μ -PPh_2)(Ph)(CO)₆ (4) (61 mg, 66%), m.p. > ^oC (dec.). Found: C, 54.60; H, 3.43; 180 C₅₇H₄₂O₆P₄Ru₃ requires: C, 54.77; H. 3.39%. Infrared (CH_2Cl_2) : $\nu(CO)$ 2030m, 2016vs, 1989m, 1957s, 1905w cm⁻¹. ¹H NMR: δ (CDCl₂) 2.60–2.69 (m, ABXY, 1H, CH₂), 3.23–3.32 (m, ABXY, 1H, CH₂), 6.20-7.55 (m, 35 H, Ph), 7.87-7.97 (m, 5 H, Ru-Ph). FAB MS (m/z): 1251, M⁺, 8; 1223, $[M - CO]^+$, 82; 1195, $[M - 2CO]^+$, 100; 1174, $[M - Ph]^+$ 29.

On one occasion a trace band (yellow-orange, $R_f 0.31$) was crystallised from CH_2Cl_2 -MeOH to give orange crystals of $Ru_3(\mu-H){\{\mu_3-\eta^1,\eta^2-CCHP(O)Ph_2\}}(\mu-PPh_2)(\mu-dppm)(CO)_6$ (5) identified by X-ray crystallography. Found: C, 52.23; H, 3.48; $C_{57}H_{44}O_7P_4Ru_3 \cdot 0.5CH_2Cl_2$ requires C, 52.69; H, 3.44%. Infrared (CH_2Cl_2) : $\nu(CO)$ 2019m, 2004vs, 1976m, 1959m, 1950m, 1942(sh) cm⁻¹. FAB MS (m/z): 1268, M⁺, 5; 1240, $[M - CO]^+$, 18; 1212, $[M - 2CO]^+$, 42; 1184, $[M - 3CO]^+$, 28; 1156, $[M - 4CO]^+$, 56; 1128, $[M - 5CO]^+$, 72; 1100, $[M - 6CO]^+$, 70; 1078, $[M - 4CO - Ph]^+$, 16; 1050, $[M - 5CO - Ph]^+$, 46; 1022, $[M - 6CO - Ph]^+$, 100.

4.7. Pyrolysis of $[Ru_3(\mu-dppm)(CO)_9]_2(\mu-dppa)$

A solution of $\{Ru_3(\mu-dppm)(CO)_9\}_2(\mu-dppa)$ (156 mg, 0.069 mmol) in toluene (15 ml) was heated at reflux point for 1.25 h. After evaporation to dryness (rotary evaporator), preparative TLC (acetone-light petroleum 3:7) showed three major bands. Bands 1 (red-orange, $R_f 0.62$) and 2 (orange, $R_f 0.48$) were identified as $Ru_3\{\mu_3-PPhCH_2PPh(C_6H_4)\}(CO)_9$ (15 mg, 13%) and $Ru_3(\mu-dppm)(CO)_{10}$ (1) (20 mg, 17%) respectively, by comparison of their IR $\nu(CO)$ spectra with those of authentic samples. Band 3 (yellow, $R_f 0.43$) gave yellow feathery crystals (from CH₂Cl₂-MeOH) of $Ru_3(\mu_3-PPhCH_2PPh_2)(\mu_3-\eta^1:\eta^2:P-$ $C_2 PPh_2$ (μ -PPh_2)(Ph)(CO)₆ (4) (45 mg, 52%) identified by spot TLC and solution IR.

4.8. Crystallography

Unique data sets were measured at ca. 295 K using an Enraf-Nonius CAD4 diffractometer $(2\theta - \theta \operatorname{scan})$ mode; monochromatic Mo K α radiation, $\lambda 0.7107_3$ Å); 9920 independent reflections were obtained for 4 (14 183 for 5), 4844 (7577) with $I > 3\sigma(I)$ being considered 'observed' and used in the full matrix least squares refinement after Gaussian absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $(x, y, z, U_{iso})_{H}$ were constrained at estimated values. Conventional residuals R, R' on |F| are 0.057 (0.055), 0.055 (0.054) respectively, statistical weights derivative of $\sigma^2(I) = \sigma^2(I_{diff}) +$ $0.0004\sigma^4(I_{diff})$ being used. Computation used the XTAL 3.2 program system [25] implemented by Hall; neutral atom complex scattering factors were employed. Pertinent results are given in the figures and tables; material deposited comprises positional and thermal parameters for all atoms, full molecular non-hydrogen geometries and structure factor amplitudes.

4.8.1. Crystal data

(4) $\operatorname{Ru}_{3}(\mu_{3}-\operatorname{PPhCH}_{2}\operatorname{PPh}_{2})(\mu_{3}-\eta^{1}:\eta^{2}:P-C_{2}\operatorname{PPh}_{2})(\mu-\operatorname{PPh}_{2})(\operatorname{Ph})(\operatorname{CO})_{6} \equiv C_{57}H_{42}O_{6}P_{4}\operatorname{Ru}_{3},$ M.W. = 1250.1. Monoclinic, space group C2/c, a = 41.65(1), b = 12.738(5), c = 29.733(8) Å, $\beta = 134.29(2)^{\circ}$, V = 11290 Å³, Z = 8. $\rho_{c} = 1.47$ g cm⁻³; F(000) = 4992. $\mu(\operatorname{Mo} K\alpha) 8.5$ cm⁻¹; specimen: 0.07 $\times 0.55 \times 0.16$ mm³; $A^{*}(\operatorname{min,max}) = 1.11$, 1.19, $2\theta_{\max} = 50^{\circ}$.

(5) Ru₃(μ -H){ μ_3 - η^1 , η^2 -CCHP(O)Ph₂}(μ -PPh₂)(μ -dppm)(CO)₆ · 2CHCl₃ = C₅₉H₄₆Cl₆O₇P₄Ru₃, M.W. = 1506.8. Monoclinic, space group P2₁/c, a = 10.983(4), b = 24.560(9), c = 24.031(5) Å, \beta = 107.01(2)^\circ, V = 6199 Å³, Z = 4. ρ_c = 1.61 g cm⁻³; F(000) = 3000. μ (Mo K α) 11.3 cm⁻¹; specimen: 0.42 × 0.19 × 0.08 mm³; A^{*}(min,max) = 1.10, 1.27, 2 θ_{max} = 55°.

4.8.2. Further comments

In 5, the hydrogen atom attached to C(1) and that bridging Ru(1) and Ru(2) were located and refined in (x, y, z, U_{iso}) . Solvent populations were constrained at unity after trial refinement.

Acknowledgements

Financial support from the Australian Research Council is gratefully acknowledged. PAH held a University of Adelaide Postgraduate Research Scholarship. We thank Johnson Matthey Technology for a generous loan of $RuCl_3 \cdot nH_2O$.

References

- G. Lavigne, in: D.F. Shriver, R.D. Adams, H.D. Kaesz, (Eds.), The Chemistry of Metal Cluster Complexes, VCH, New York, 1990, Chapter 5, p. 201.
- [2] A.J. Deeming, R.E. Kimber, M. Underhill, J. Chem. Soc. Dalton Trans. (1973) 2589. A.J. Deeming, S.E. Kabir, N.I. Powell, P.A. Bates, M.B. Hursthouse, J. Chem. Soc. Dalton Trans. (1987) 1529.
- [3] A.J. Deeming, I.P. Rothwell, M.B. Hursthouse, J.D. Backer-Dirks, J. Chem. Soc. Dalton Trans. (1981) 1879. S.C. Brown, J. Evans, L. Smart, J. Chem. Soc. Chem. Commun. (1980) 1021.
- [4] N. Lugan, G. Lavigne, J.-J. Bonnet, N. Réau, D. Neibecker, I. Tkatchenko, J. Am. Chem. Soc. 110 (1988) 5369.
- [5] M.M. Harding, B.S. Nicholls, A.K. Smith, J. Chem. Soc. Dalton Trans. (1983) 1479.
- [6] N.J. Taylor, P.C. Chieh, A.J. Carty, J. Chem. Soc. Chem. Commun. (1975) 448.
- [7] R. Bender, P. Braunstein, A. Tiripicchio, M. Tiripicchio-Camellini, Angew. Chem. 97 (1985) 862; Angew. Chem. Int. Ed. Engl. 24 (1985) 861. R. Bender, P. Braunstein, A. Dedieu, P.D. Ellis, B. Higgins, P.D. Harvey, E. Sappa, A. Tiripicchio, Inorg. Chem. 35 (1996) 1223.
- [8] C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, Chem. Commun. (1972) 87. C.W. Bradford, R.S. Nyholm, J. Chem. Soc. Dalton Trans. (1973) 529.
- [9] N. Lugan, G. Lavigne, J.-J. Bonnet, Inorg. Chem. 26 (1987) 585.
- [10] J.A. Cabeza, R.J. Franco, A. Llamazares, V. Riera, E. Perez-Carreno, J.F. Van der Maelen, Organometallics 13 (1994) 55. P. Briard, J.A. Cabeza, A. Llamazares, L. Ouahab, V. Riera, Organometallics 12 (1993) 1006.
- [11] M.I. Bruce, P.A. Humphrey, B.W. Skelton, A.H. White, J. Organomet. Chem. 526 (1996) 85.
- [12] E. Sappa, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry 2, vol. 7, Elsevier, Oxford, 1995, Chapter 14, p. 827.
- [13] N. Lugan, J.-J. Bonnet, G. Lavigne, J. Am. Chem. Soc. 107 (1985) 4484.
- [14] M.I. Bruce, J.R. Hinchliffe, B.W. Skelton, A.H. White, J. Organomet. Chem. 495 (1995) 141.
- [15] M.I. Bruce, N.N. Zaitseva, B.W. Skelton, A.H. White, J. Organomet. Chem. 515 (1996) 143.
- [16] M.I. Bruce, M.L. Williams, J.M. Patrick, A.H. White, J. Chem. Soc. Dalton Trans. (1985) 1229. M.I. Bruce, M.J. Liddell, E.R.T. Tiekink, J. Organomet. Chem. 391 (1990) 81.
- [17] C.J. Adams, M.I. Bruce, B.W. Skelton, A.H. White, J. Chem. Soc. Chem. Commun. (1992) 26.
- [18] A.W. Coleman, D.F. Jones, P.H. Dixneuf, C. Brisson, J.-J. Bonnet, G. Lavigne, Inorg. Chem. 23 (1984) 952.
- [19] D.E. Fogg, N.J. Taylor, A. Meyer, A.J. Carty, Organometallics 6 (1987) 2252.
- [20] D.E. Fogg, S.A. MacLaughlin, K. Kwek, A.A. Cherkas, N.J. Taylor, A.J. Carty, J. Organomet. Chem. 352 (1988) C17.
- [21] R. Dodsworth, T. Dutton, B.F.G. Johnson, J. Lewis, P.R. Raithby, Acta Crystallogr. Sect. C: 45 (1989) 707.
- [22] C.J. Adams, M.I. Bruce, B.W. Skelton, A.H. White, J. Cluster Sci. 5 (1994) 419.
- [23] M.I. Bruce, P.A. Humphrey, B.W. Skelton, A.H. White, in preparation.
- [24] M.I. Bruce, B.K. Nicholson, M.L. Williams, Inorg. Synth. 26 (1989) 276; Inorg. Synth. 28 (1990) 224.
- [25] S.R. Hall, H.D. Flack, J.M. Stewart (Eds.), XTAL Users' Manual, Version 3.2, 1992, Universities of Western Australia, Geneva and Maryland.